A ROUTE TO FLUOROALKYL-SUBSTITUTED AROMATIC COMPOUNDS INVOLVING FLUOROALKYLCOPPER INTERMEDIATES¹

V. C. R. McLoughlin and J. Thrower.

Materials Department, Royal Aircraft Establishment, Farnborough, Hants

(Received in the UK 18 July 1969; Accepted for publication 21 August 1969)

Abstract—Interaction of iodofluoroalkanes, iodoaromatic compounds and copper in polar aprotic solvents at 110–130° leads to good yields of (fluoroalkyl)aromatic compounds. The iodofluoroalkanes and iodoaromatic compounds can bear a wide variety of substituents (carboxyl, nitro, amino, hydroxyl, etc). The reactions proceed via fluoroalkylcopper compounds which are markedly more stable than their non-fluorinated analogues.

THERE are a number of routes to fluoroalkyl-substituted aromatic compounds. Thus good results have been obtained²⁻⁴ by free-radical processes when aromatic compounds are heated with iodofluoroalkanes. High yields also result from the reaction of polyfluoroacyl chlorides with aromatic compounds in the presence of nickel carbonyl.⁵ The main alternative to these direct methods is the fluorination of fluoroalkyl aryl ketones, either with sulphur tetrafluoride,⁶ or by the phosphorus pentachloride/antimony trifluoride sequence.⁷

We now report another direct preparative route to a wide range of fluoroalkyl-substituted aromatic compounds of both benzenoid and heterocyclic types. Iodo-fluoroalkanes and iodoaromatic compounds react with copper in polar aprotic solvents to give good yields of such compounds: $R_FI + ArI \xrightarrow{Ch} R_FAr + CuI$. Substitution in the aromatic ring occurs exclusively at the iodine site, and ¹⁹F NMR spectroscopy⁸ indicates that the structure of the fluoroalkyl group remains unchanged. Biaryls, from Ullmann coupling, are usually absent.

This synthesis is applicable to a range of monoiodofluoroalkanes (Table 1) and the two classes most frequently employed have been 1-iodoperfluoroalkanes and α-iodo-ωH-perfluoroalkanes. 2-Iodoheptafluoropropane is an example of a secondary fluoroalkyl iodide that has been used. Other groups such as phenyl, carboxylic ester or even a free carboxyl group may be present in the iodofluoroalkane. Yields of over 60% are usual and even when bromofluoroalkanes are employed, yields of 40% are obtainable. In general, the use of a bromofluoroalkane in place of the corresponding iodofluoroalkane requires more vigorous reaction conditions, and lower yields are obtained. The partially fluorinated alkyl iodide CF₃CH₂I gave (2,2,2-trifluoroethyl)benzene, albeit in low yield (ca. 10%). However, iodoalkanes do not undergo any comparable condensation with iodobenzene: 1-iodobutane gave a mixture of butane and but-1-ene.

The reaction is also applicable to α,ω -di-iodoperfluoroalkanes, yielding α,ω -diarylperfluoroalkanes (Tables 2 and 3). The preparations of 1,3-diarylhexafluoro-propanes have been investigated extensively (Table 2) and 1,3-diphenylhexafluoro-propane has been prepared in 60-90% yield in several solvents. 1,7-Di-iodotetra-

Crown copyright, reproduced with the permission of the Controller, Her Majesty's Stationery Office.

TABLE 1. FLUOROALKYLATION REACTIONS INVOLVING MONORODOFLUOROALKANES

lodofluoro-	Halogenoaromatic	Copper	Solvent		Yield	Re	Reaction conditions	SQ
mmole	mmole	mmole	冒	Products	` %	Method	Time (min)	Temp (°C)
CF.1 25	C ₆ H ₃ I 35	95	DMF 25	ÇF₃.C ₆ H₃⁴	2	ပ	720	150
C ₃ F ₃ I 15	C ₆ H ₅ I	8	DMSO 25	C ₃ F,·C ₆ H ₃ *	65	¥	(i) (ii) (ii)	120
C ₃ F,I 32	m-AcO·C ₆ H ₄ I 61	130	DMF 60	m-C ₃ F', C ₆ H ₄ . OAc	65	Q	(ii) 50	135 125–135
C ₃ F,1	0-02N·C6H4C1	8	DMF 15	o-C ₃ F ₁ ·C ₆ H ₄ ·NO ₂ ^b	17°	ပ	048	175
(CF ₃) ₂ CFI 38	C ₆ H,1	270	DMF 50	(CF ₃),CF·C ₆ H ₃ *	3	Q	(i) 15	125 125
C ₅ F ₁₁ I	P-HO ₂ C·C ₆ H ₄ I 10	8	DMSO 20	PC₃F11 · C₅H₄ · CO₃H	89	æ	210	105-120
C,F ₁₅ I 100	C ₆ H ₃ I 100	240	DMSO 110	C,F13 · C,H3	5	Q	(i) 60 (ii) 120	110-120
C ₇ F ₁₅ Br	C,H,1	160	DMF 60	C,F ₁₃ ·C ₆ H ₃ ^b C ₆ H ₃ Br ^c C ₆ H ₃ ·C ₆ H ₃ ^c	\$ 22 22 22 24	ပ	3000	188
C,F ₁₅ I	C ₆ F ₃ Br 10	8	DIMSO 25	C ₆ F ₃ ·C ₆ F ₃ C ₇ F ₁₃ ·C ₆ F ₃	28 22	<	(i) 85 (ii) 90	120
C,F ₁₃ 1 10	p-MeO ₃ C·C ₆ H ₄ 1 10	4	DMF 25	pC,F13 · C,H4 · CO,H4	70.	D	(i) 15 (ii) 180	125 125

40 160	100		;		(ii) 290	115-120
-М с 120	HMPA 30	C ₇ F ₁₅	176	Q	(i) 15 (ii) 40	156–162
4 Br 160	DMSO 60	Ме р-С,F ₁₃ · С ₆ Н ₄ · СНОН	\$9	Ω	(i) 30 (ii) 720	125
08	DMSO 25	m-C9F19·C6H4·NH2	\$	æ	210	105–120
140	DMSO 50	P-H(CF ₂) ₆ C ₆ H ₄ Br ² P-H(CF ₂) ₆ C ₆ H ₄ l ³ P-H(CF ₂) ₆ C ₆ H ₄ (CF ₂) ₆ H ³	% 10° 4	۵	(i) 15 (ii) 180	104-110
24	DMSO 2-0	H(CF ₂) ₁₀ C ₆ H ₃	,59	∢	(E) (E) (C) (C) (C) (C) (C) (C) (C) (C) (C) (C	120–140 120
7.0	DMSO 5-0	C ₆ H ₃ (CF ₂) ₃ C ₆ H ₅ *	8	<	(i) 25 (ii) 10	120
\$	DMF 11		92	æ	180	021-011
16	DMSO 5-0	С,н,(СF,),СО,Н	8	æ	70	061-011
	DMF 11 DMSO 5-0	C ₆ H ₃ (CF ₂).		CF, CF,	CF ₂ 70	$CF_{2} \rightarrow CF_{2} \qquad 70 \qquad B$ $60 \qquad B$

TABLE 1—continued

Reaction conditions	Method Time (min) Temp (°C)	95 135–140	1200 190	!
Yield	Met	70 BB	15° C	
Described	rioducis	C ₆ H ₃ (CF ₂) ₃ CO ₂ Et	CF ₃ CH ₂ ·C ₆ H ₃ *	
Solvent	Ti I	DMF 275	DMF 35	
Copper	mmole	1500	160	
Halogenoaromatic	mmole	C ₆ H ₃ I 1250	C ₆ H ₃ I 120	
Iodofluoro-	aukane mmole	EtO ₂ C(CF ₂),1 C ₆ H,1 250 1250	CF ₃ CH ₂ I 52	

By IR
 Identified by MS

^{*} By GLC

* Reaction product, p-C,F13 · C6H4 · CO2Me, was not characterised but converted into the acid by hydrolysis

* Reaction product, p-C,F13 · C6H4 · SO3Cu, was not characterised but converted, via the free acid, into the acid chloride with PCI3

decassured decasture with copper bronze and dimethyl 4-iodophthalate in DMSO gives the required 1,7-diarystetradecassure of 1,4-diphenyloctassured 1,4-Di-iodo-octassured pave a less than 10% yield of 1,4-diphenyloctassured in a reaction with iodobenzene in DMF, while in reactions with dimethyl 4-iodophthalate in DMSO, 25% yields of 1,4-bis-(3,4-dimethoxycarbonylphenyl)octassured were obtained. 10 1,2-Di-iodotetrassured than, 1,2-dibromotetrassured and dibromodissurementance react with copper in the presence of iodobenzene in polar aprotic solvents to give tetrassured by dehalogenation directly in the first two cases and probably via dissured and time the last.

A representative range of aromatic compounds has been examined and some examples are given in Tables 1, 2 and 3; in the majority of reactions iodobenzene or a substituted iodobenzene has been used. Reactions involving various halogenobenzenes are in accord with the expected ease of replacement of halogens. Thus, there was no replacement of fluorine or chlorine in reactions involving bromopentafluorobenzene, chloropentafluorobenzene, and p-chloroiodobenzene, although o-chloronitrobenzene has been fluoroalkylated. Using bromobenzene in place of iodobenzene in preparations of 1,3-diphenylhexafluoropropane, reaction was slower and gave only a 20% yield. In reactions of p-bromoiodobenzene and iodofluoroalkanes, 10-15% yields of products arising from bromine replacement were obtained, compared with 50-60% yields from iodine replacement. Some heterocyclic halides have also been examined (Table 2).

A wide variety of substituents on the halogenoaromatics are inert in this reaction: besides fluorine and chlorine, alkyl, alkoxy, carboxylic ester and nitro groups may be present without adversely affecting the yield. Even groups containing a readily protonisable hydrogen do not interfere with the fluoroalkylation process; thus, free carboxyl, amino, and hydroxyl groups may be present. However, aromatic sulphonate esters undergo a secondary reaction, probably with cuprous iodide, to give copper sulphonates: $C_7F_{15}I + Cu + p-IC_6H_4 \cdot SO_3Me \rightarrow p-C_7F_{15} \cdot C_6H_4 \cdot SO_3Cu$. Some substituents enhance the yields obtained, especially acetoxy and alkoxycarbonyl. The speed of reaction, however, does not appear to be influenced in the same way by such substituents: dimethyl iodophthalates as a class give very good yields (70-90%) even though reaction times are longer than average (5-15 hr).

Of all the suitable aprotic solvents, DMSO and DMF have been most used and DMSO is generally preferred. Pyridine, pyridine-N-oxide, 2,6-lutidine, hexamethyl-phosphoramide (HMPA), dimethylacetamide (DMAC) and sulpholane have also been successfully employed, but no reaction occurred in diethylene glycol dimethyl ether. Although one of the effective solvents is necessary for the fluoroalkylation to take place, only a small amount is required: dilute solutions of pyridine or DMSO in benzotrifluoride or hexafluorobenzene promoted reactions in high yield, whereas neither of the latter was effective alone.

In preparative work, the reaction can be brought about by heating a mixture of the iodofluoroalkane, activated copper bronze, and the iodoaromatic compound in the solvent under an inert atmosphere at 110–130° (Method B). It is usually an advantage to employ an excess of copper and of iodoaromatic compound (Tables 1, 2 and 3), although when DMSO is the solvent, stoichiometric quantities of the three reactants can generally be used; attempts to do this in other solvents have often led to reduced yields. It is also often necessary to employ a large amount of most of the solvents:

TABLE 2. FLUOROALKYLATION REACTIONS INVOLVING 1,3-DI-10DOHEKAFLUOROPROPANE

						Re	Reaction conditions	ons
Halogenoaromatic mmole	I(CF ₂),I mmole	Copper mmole	Solvent	Products	Yield %	Method	Time (min)	Temp (°C)
C ₆ H ₅ I 1990	330	2240	DMAC 1050	C ₆ H ₃ (CF ₂) ₃ C ₆ H ₃ * C ₆ H ₃ (CF ₂) ₃ H*	27	Ω	(i) 90 (ii) 195	115-120
C,H,J 33	15	95	Pyridine 30	C ₆ H ₅ (CF ₂) ₃ C ₆ H ₅ *	6	<	(i) 30 (ii) 45	70-90 100
C ₆ H ₃ I	5-0	31	DMSO/ C ₆ F ₆ 0-8 5-0	C ₆ H ₃ (CF ₂) ₃ C ₆ H ₃	95¢	g	1320	&
C ₆ H ₃ I	7.5	35	DMSO/ H ₂ O	C ₆ H ₅ (CF ₂) ₅ C ₆ H ₅	\$9	æ	1440	100
C ₆ H,1 200	230	400	DMSO 80	C ₆ H ₃ (CF ₂) ₃ I C ₆ H ₃ (CF ₂) ₅ C ₆ H ₃	8 9	យ	© (ii)	110-120
C ₆ H ₅ Br 100	13	991	DMF 22	C ₆ H ₃ (CF ₂) ₃ C ₆ H ₃	20,	æ	1080	140
C ₆ F ₃ Br 100	15	160	DMF 20	C ₆ F ₃ ·C ₆ F ₃ [¢] C ₆ F ₃ (CF ₃) ₃ C ₆ F ₃	35	æ	95	120-128
p-cic,H ₄ 1 150	8	330	DMSO 120	(PCIC,H4 · CF2),CF2	08	Q	(i) 60 (ii) 120	110-120
m-HO·C ₆ H₄I 70	3.5	୍	DMSO 5-0	(m-HO·C ₆ H ₄ ·CF ₂) ₂ CF ₂	9 5	A	360	110-125
m-Me · C ₆ H ₄ I 160	25	240	DMF 40	$(m-Me\cdot C_6H_4\cdot CF_2)_2CF_2^*$	19	æ	04	120

m-McO·C,H,I 190	42	320	DMF 50	$(m ext{-MeO}\cdot C_6H_4\cdot CF_2)_2CF_2$	\$\$	æ	120	140-150
m-O ₂ N · C ₆ H ₄ I 84	15	961	DMF 20	(m-O ₂ N·C ₆ H ₄ ·CF ₂) ₂ CF ₂ *	52	æ	8	130-135
P-AcO · C ₆ H ₄ I 2420	495	3040	DMAC 2000	p-AcO · C ₆ H ₄ (CF ₂) ₃ H* (p-AcO · C ₆ H ₄ · CF ₂) ₂ CF ₂ *	4 4 63	Q	(i) 100 (ii) 145	110–12 4 122–127
m-AcO·C ₆ H ₄ I 630	111	833	DMF 300	$(m\text{-}AcO\cdot C_6H_4\cdot CF_3)_2CF_2^*$ $m\text{-}AcO\cdot C_6H_4(CF_2)_3H^*$	82 1	æ	120	120-130
() 1 () 1	20	130	Pyridine 40	$\langle s \rangle \sim (CF_b)_s / \langle s \rangle$	256	⋖	(i) 40 (ii) 35	70 -8 0 100
m-EtO ₂ C·C ₆ H ₄ I 1140	212	1825	DMF 350	(m-EtO ₂ C·C ₆ H ₄ ·CF ₂) ₂ CF ₂ *	9/	D	(i) 82 (ii) 77	108–120 109–118
P-MeO ₂ C·C ₆ H ₄ I 1530	320	2580	DMF 1000	$(p\text{-MeO}_2\text{C}\cdot\text{C}_6\text{H}_4\cdot\text{CF}_2)_2\text{CF}_2$ $(p\text{-MeO}_2\text{C}\cdot\text{C}_6\text{H}_4)_2^*$	63	Ω	(i) 90 (ii) 60	100-120 115-120
	23	310	DMF 65	$\left(\begin{array}{c} \left(CF_{2} \right), \\ \left(CF_{2} \right), \\ \end{array} \right) \end{array} \right) \right)$	52	æ	8	126
Me O Z Z			DMF	McO (CF ₂) ₃ H"	184	æ	120	110-120
62 МеО	=	8	04	MeO (No CF2)3 (N	7.			

Identified by MS
 By GLC
 Identified by IR

⁴ Low yields possibly caused by reaction of 2-chloro-4,6-dimethoxy-1,3,5-triazine with DMF

Table 3. Fluoroalkylation reactions involving other α , α -dihalogenoperfluoroalkanes

a,m-Dihalogeno-	Iodoaromatic	Copper	Solvent		Yield	, a	eaction	Reaction conditions	ons
perfluorosikane mmole	mmole	mmole	固	Products	%	Method	- 1	Time (min)	Temp (°C)
CBr ₂ F ₂	C ₆ H ₅ I	240	HMPA 150	C,H,Br CF,=CF,	146	۵	E 3	S 21	120–150 150
I(CF ₂),1	MeO ₂ C 1		DMSO	MeO ₂ C CO ₂ Me		۵	Θ	8	116-120
	McO ₂ C			MeO2C CO2Me					
5.5	10	5 4	ю	CF ₂ =CF ₂ *'	u		<u>(i)</u>	120	116–122
I(CF ₂),1 44	C ₆ H ₃ I 260	310	DMF 75	C ₆ H ₃ (CF ₂),C ₆ H ₃	3	Q	© (3	35	115-125 120-130
I(CF ₂),I	MeO ₂ C 1		DMSO	MeO ₂ C C C(F ₂), CO ₂ Me	88	Q	②	8	120-125
	MeO ₂ C			MeO ₂ C CO ₂ Me					
47	76	240	92				<u>(ii)</u>	(ii) 720	120-125

* Identified by IR

* By GLC

* Not determined

* Identified by MS

for example, 0.15 to 1.0M solutions of iodofluoroalkanes in DMF or DMAC have been used, thus providing a useful heat sink for the reaction exotherm. However, smaller amounts of DMSO can be used very successfully, making it possible to conduct laboratory preparations involving up to 4 molar amounts of reagents. In large scale preparations where a small amount of solvent is being employed, the exothermic reaction is best controlled by adding either the iodofluoroalkane or the copper bronze to the other reagents at 110–130° (Methods D and E respectively), and the former technique has been used extensively. The reactions are remarkably clean and the insignificant side reactions make for easy isolation of pure products; only in the few instances where Ullmann aryl-coupling occurred was purification difficult. The most common by-products, formed in less than 1% yield, result from reductive dehalogenation of the iodoaromatic compound and the iodofluoroalkane. These side-reactions were virtually absent when DMSO was used as solvent.

Fluoroalkylcopper compounds

It was apparent that fluoroalkylcopper compounds were involved when it was found that these fluoroalkylations could be conducted in two separate stages. The first stage comprised metallation of the iodofluoroalkane with copper to give a solution of the fluoroalkylcopper compound. In the second stage, this reactive solution was treated with the haloaromatic compound to form the (fluoroalkyl)aromatic.

The fluoroalkylcopper compounds have been studied mainly as solutions, and evidence for copper(I) species is provided by the stoichiometry of the reactions of both monoiodofluoroalkanes and 1,3-di-iodohexafluoropropane with copper and iodobenzene:

$$Y(CF_2)_nI + 2Cu \rightarrow Y(CF_2)_nCu \xrightarrow{C_6H_5I} Y(CF_2)_nC_6H_5$$

$$I: Y = F \qquad III: Y = F \qquad V: Y = F$$

$$II: Y = H \qquad IV: Y = H \qquad VI: Y = H$$

$$\begin{array}{c} I(CF_2)_3I + 2Cu + C_6H_5I \rightarrow C_6H_5(CF_2)_3I \\ VIII \end{array} \left[\begin{array}{c} + C_6H_5(CF_2)_3C_6H_5 \\ IX \end{array} \right]$$

Copper and the monoiodofluoroalkanes (e.g. I, n = 3; II, n = 6; or VIII) in DMSO at $100-120^{\circ}$ react completely together in proportions which correspond precisely with those in the equation shown. Clear, homogenous solutions are formed which, on subsequent treatment with iodobenzene at 120° , give the corresponding (fluoroalkyl)benzene in 60-70% yields (Method A, Table 1). Also, the reaction between 1 mol of the di-iodide (VII) and 1 mol of iodobenzene in DMSO consumes 2 equivalents of copper and gives the monoiodide (VIII) as the major product (60% yield) together with a 10% yield of 1,3-diphenylhexafluoropropane, consistent with a monocopper(I) derivative being formed from the di-iodide (VII).

Metallation of VII in pyridine proceeds at a lower temperature (70–100°) than in the other solvents, apparently giving the difunctional copper compound (X), although the precise stoichiometry has not been established:

Subsequent reaction of a filtered solution of X with iodobenzene or with 2-iodothiophen¹⁰ gave between 20 and 40% yields of the corresponding 1,3-diarylhexa-fluoropropane (Method A, Table 2). Attempts to prepare solutions of X in other solvents have not been conclusive and require further study.

Solutions of fluoroalkylcoppers III and IV prepared under a nitrogen atmosphere are usually green-blue in colour, probably as a result of oxidation by traces of oxygen in the nitrogen used; similar preparations under a high-purity argon atmosphere are almost colourless. When dry air was passed through a DMSO solution of the copper compound derived from 1-iodo-3-phenylhexafluoropropane (VIII), in which no VIII remained, very deep colours developed which then faded to a pale green. Analysis by GLC then indicated that VIII had been regenerated, and a 65% recovery was obtained on distillation. A copper(II) species might be an intermediate in this reaction, which could account for the colour changes observed.

Addition of water to the solutions of the fluoroalkylcoppers in the absence of air results in a very slow formation of the corresponding hydrofluoroalkane. For example, perfluoroheptylcopper (III, n=7) in DMSO in the presence of 5 mols of water formed 1H-perfluoroheptane to the extent of 10-15% during 3 days at room temperature. The compounds are also resistant to hydrolysis at higher temperatures: 1,3-diphenylhexafluoropropane (IX) could still be formed in good yield from a solution of 3-phenylhexafluoropropylcopper in DMSO which had been treated with 1.5 mols of water at 100° for 20 minutes; also 1,3-diphenylhexafluoropropane could be synthesised in high yield from 1,3-di-iodohexafluoropropane, at 130° , in DMSO or DMF containing up to $7\frac{1}{2}\%$ of water. A very good yield was obtained even in a 1:2 mixture of water and DMSO (Table 2). Significantly, the reaction products from these experiments in wet DMSO did not contain any 1-phenyl-3H-hexafluoropropane, which compound might be expected if hydrolysis of the intermediate 3-phenylhexafluoropropylcopper had occurred. In wet DMF the amount of 1-phenyl-3H-hexafluoropane formed was less than in dry DMF.

Perfluoroheptylcopper (III, n = 7), prepared from 1-iodoperfluoroheptane and copper in DMSO, can be isolated by the addition of water, extracting the precipitate with ether, washing the ether solution free of cuprous iodide and DMSO, and evaporating the dried ether solution, oxygen being absent at all times. The isolated perfluoroheptylcopper reacts with iodobenzene to give (perfluoroheptyl)benzene (V, n = 7) both in ether and in DMSO, in the latter solvent a 65% yield being obtained. The stability of the fluoroalkylcoppers to water contrasts with the behaviour of alkylcopper and arylcopper 12, 13 compounds, which are readily hydrolysed usually to the corresponding hydrocarbons, and so parallels the behaviour of fluoroalkylzinc compounds, which are much less readily hydrolysed than alkylzinc compounds. In the presence of air and water, the fluoroalkylcopper compounds appear to undergo a rapid oxidative hydrolysis; for example, perfluoroheptylcopper in ether, and free

from cuprous iodide, gives perfluoroheptanoic acid. This is formally similar to the slower wet photochemical oxidation of fluoroalkyl iodides.¹⁵

In the absence of air, at room temperature in DMSO or DMF, the fluoroalkyl-coppers are quite stable: a solution of perfluoroheptylcopper (III, n=7) in DMF was stored for 3 months at room temperature; it remained clear, no copper was deposited, and it retained most of its activity towards iodobenzene. A solution in ether was less stable as it gradually deposited copper metal at room temperature, although the rate of decomposition was low, about 1% per day. This decomposition was accelerated markedly when attempts were made to isolate the copper compound by precipitation with petrol or removal of ether. The solutions in DMSO or DMF also have considerable stability at temperatures up to 120° , since they are made and used at these temperatures (Table 1, Method A); subsequent yields of (fluoroalkyl)-benzenes show that the amount of decomposition is unimportant even after an hour at over 100° .

When solutions in DMSO or DMF are heated at about 150°, thermal decomposition of the fluoroalkylcopper occurs quite rapidly with the deposition of copper, the major volatile products being due to abstraction of hydrogen. For example, a solution of IV, n=10, in DMSO gave a product tentatively identified as $H(CF_2)_{10}H$, in 65% yield. The decomposition of the copper derivative of VIII in DMSO has been examined more completely, the volatile products being isolated by preparative-scale GLC and identified by mass spectrometry

$$\begin{bmatrix} (CF_2)_3Cu \end{bmatrix}$$

$$\downarrow 150^{\circ}$$

$$CF_2 + (CF_2)_6 + (CF_2)_3CH_2SCH_2$$

$$XI XII XIII XIII XIV$$

Once again the major product, XI (ca. 35%), arose by hydrogen abstraction, and was accompanied by XII (ca. 25%), XIII (ca. 10%), and XIV (ca. 5%), the last being only tentatively identified. In one large-scale reaction between the di-iodide VII, p-iodophenylacetate, and copper in DMAC (Table 2), the reaction product contained equimolar amounts of 1,3-di-(p-acetoxyphenyl)hexafluoropropane and 1-(p-acetoxyphenyl)-3H-hexafluoropropane (XVI). It is usual to obtain less than 1% of products such as XVI, and the large amount of XVI could arise by thermal decomposition of the intermediate fluoroalkylcopper XV:

TABLE 4. SOME PHYSICAL CONSTANTS AND ANALYSIS OF PLUOROALKYL-ARENES PREPARED VIA PLUOROALKYL-COPPER COMPOUNDS

						Ana	Analysis		
Compound	m.p.* (°C)	b.p. (°C/mmHg)	n ²⁰		Found %			Calculated %	\ \sigma
				ပ	I	<u>tr</u> ,	ပ	H	ĹĽ.
CF3CH2 · C6H3		136-7	1-4355						
H(CF ₂) ₃ C ₆ H ₅		95-100/100	1-4082	47-0	2.4	49.7	47.4	2:6	\$
m-H(CF2)3C6H4.OAc		245-6	1-4293	46-4	2.5	39-4	46.2	2.8	39-9
P-H(CF,),C,H4.OAc		140-4/23 (246-7°)	1-4300	46.4	2.8	39-4	46.2	2.8	39-9
$H(CF_2)_3$ \longrightarrow N	34-8			32.7	2.1	39-0	33-0	2.4	39-2
(GF ₃) ₂ CF · C ₆ H ₅ ^{5,4}		120	1-3860						
C ₃ F,·C ₆ H ₃ ^{h,}		132	1.3820						
o-C3F, C6H4.NO2		238	1-4221						
m-C ₃ F ₇ ·C ₆ H ₄ ·OAc		92-4/20	1-4075	43.5	2:1	4	43.4	2:3	43.8
I(CF2)3C6H3		98-9/20	1-4682	31-0	1:3	32.8	30.5	4	32.2
HO ₂ C(CF ₂) ₃ C ₆ H ₃	45-8	146-7/20		4 4·3	2:2	42:1	44.2	2:2	41.9
EtO ₂ C(CF ₂) ₃ C ₆ H ₅		130-2/20							

$p\text{-}C_5\text{F}_{11}\cdot C_6\text{H}_4\cdot \text{CO}_2\text{H}^f$	189-91			37-2	1:5	53-3	36-9	1.3	53.6
P-H(CF2),C6H4Br		119–20/13	1-4120			A Angelon and Ange			
C,F15 · C,H5		88-90/16	1-3599						
P-C,F13 · C,H4 · CH(Me)OH	39-42	93–5/0-3		36.4	1.8	LLAND TO THE TOTAL THE TOTAL TO THE TOTAL TOTAL TO THE TO	36-7	1-9	
PC,F13 · C,H4 · CO,H	193-4			34.5	1:1	58·3	34:3	19	58·1
P-C,F13 · C,H4 · SO,CI	79-83	A A A A A A A A A A A A A A A A A A A		28:7	1.0	52-0	28-6	0.7	52-3
C,F is		126/0-25	1-4370						
C,F13 · C6F9	TO A CONTRACT OF THE PROPERTY	213*	1-3451	29.2	Who like the same the same to	70.4	29·1	8	70-9
m-C9F19·C6H4·NH2	49–51	Mercentage of the control of the con		32·1	1.2	54 .3	32·1	Ξ	64.2
H(CF ₂) ₁₀ C ₆ H ₅ *	46-7	166-8/56		33.5	1:1	66.2	33.2	1.0	65.8
C ₆ H ₅ (CF ₂₎₃ C ₆ H ₅ '	49–50	86-8/0-05	1-4785	99-0	3-0	37-4	59-2	3.3	37-5
$C_6F_5(CF_3)_3C_6F_5^3$	38-9								
p-CIC,H4(CF,)3C,H4-p-CI	107–8			48-3	2-2	30-5	48.2	2·1	30-6
m-McC ₆ H ₄ (CF ₂) ₃ C ₆ H ₄ -m-Mc		160-2/18	1-4880	61.5	4.2	33.7	61.5	4:2	34.3
m-O ₂ N · C ₆ H ₄ (CF ₂) ₃ C ₆ H ₄ -m-NO ₂	92–3			45.4	2·1	28.7	45.7	2.0	28.9
m-MeO · C,H4(CF2)3C,H4-m-OMe		146-50/0-2	1-4969	55-9	3.6	31.4	56·1	3.9	31.3
								- Landerson	

TABLE 4—continued

						Analysis	lysis		
Compound	в. С. С.	b.p. (°C/mmHg)	74.20 74.00		Found %	Maria Anna Paris P	0	Calculated %	
Addressed Wigner Communication (Communication Communication Communicatio		Annalisangga appga a Pippy	The state of the s	ပ	H	4	ပ	н	jr.
m-AcO · C,H,(CF,)3C,H,-m-OAc	58-9			54.	3.3	27·1	54.3	3.3	27.2
m-HO · C ₆ H ₄ (CF ₂) ₃ C ₆ H ₄ -m-OH	99-100	A CONTRACTOR OF THE PROPERTY O	Name of the latest states and the latest sta	53-5	30	34.1	53-6	30	33-9
P-AcO · C6H4(CF2)3C6H4-P-OAc	125	THE CONTROL OF THE CO	Tarana and the same of the sam	54.7	3.3	27.3	\$43	3.3	27.2
m-EtO ₂ C·C ₆ H ₄ (CF ₂) ₃ C ₆ H ₄ -m-CO ₂ Et	100 A	170/0-1		26 ·1	04	23-5	26.2	40	25.5
m-HO ₂ C·C ₆ H ₄ (CF ₂) ₃ C ₆ H ₄ -m-CO ₂ H ⁴	253			52-0	2:8	28.7	52-1	2.5	29·1
P-MeO2C · C6H4(CF2)3C6H4-P-CO2Me	128-30	American propagation and the control of the control		55.7	3.5	26.1	\$4.3	3.3	27.2
p-HO ₂ C·C ₆ H ₄ (CF ₂) ₃ C ₆ H ₄ -p-CO ₂ H ⁴	355			52-0	2.5	28-9	52·1	2.6	29-1
$\left\langle \left\langle \right\rangle \right\rangle = \left\langle \left\langle \left\langle \right\rangle \right\rangle \right\rangle \left\langle \left\langle \left\langle \right\rangle \right\rangle \right\rangle$		140/15	1-4910						
MeO N CF2)3 N N N N N N N N N N N N N N N N N N N	115-8								
$\left(\begin{array}{c} \left(CF_{s}\right) _{s}-\left(\begin{array}{c} \\ \\ \end{array}\right) \end{array}\right)$	62-4			51-1	2.9	37-1	51-0	2.6	37-2

(CF ₂) ₃ CF ₂ CF ₂		160(bath)/0-01	1-4740	52·1	2.7	8-44-8	52-4	2.4	45.2
C ₆ H ₃ (CF ₂),C ₆ H ₃ "	55.6			\$	3-0	43.4	54·3	2.8	42.9
MeO ₂ C (CF ₂), CO ₂ Me	102-3			44.1	2.5	35-9	44-0	2:5	36-1
"uncorrected purified by preparative-scale GLC and analysed by MS by Siwoloboff's method lit ²⁷ b.p. 127–127-6°, ng ³ 1-4112 lit ²⁸ b.p. 127–8°, ng ³ 1-3875 cquiv. 392; requires equiv. 390 lit ² b.p. 200°, ng ³ 1-3576 lit ² b.p. 74–6°/0-24 mmHg lit ⁶ b.p. 74–6°/0-24 mmHg lit ⁶ b.p. 74–6°/0-24 mmHg lit ⁶ b.p. 74–6°/0-3° lit ⁶ m.p. 52–3°.	ester								

The rapid thermal decomposition of the fluoroalkylcopper XV to give XVI would be expected to occur at temperatures higher than the reaction temperature (<127°) in DMSO or DMF, but it is possible that XV and other fluoroalkylcoppers are less stable in DMAC. The products XI, XII, XIII, XIV, and XVI are consistent with decomposition by a radical mechanism, which is in contrast to the decomposition of arylcopper¹³ and vinylcopper¹⁶ compounds where free-radical intermediates are not formed, and is more akin to that of alkylcopper compounds where thermal decomposition can occur by both radical and non-radical pathways according to structure.¹⁷ It is noteworthy than no olefinic products resulting from loss of fluorine by an ionic mechanism were formed, since it has been suggested¹³ that perfluoro-t-butylcopper may be in equilibrium with cuprous fluoride and perfluoroisobutene.

Clearly, the fluoroalkylcopper compounds are much more thermally stable than alkylcopper compounds: solutions of methylcopper-tributylphosphine complexes in ether are stable only at sub-ambient temperatures. ¹⁸ Recently, pentafluorophenylcopper and perfluoro-t-butylcopper have been prepared by metathetical reactions, and they also were found to be appreciably more thermally stable than their hydrocarbon analogues. ¹³ These as well as our own observations are in general agreement with the ability of fluorine to stabilise carbon to transition metal σ-bonds. ¹⁹

Mechanism of the fluoroalkylation reaction

The mechanism of fluoroalkylation must be similar to that operating in reactions of halogenoaromatic compounds with cuprous salts²⁰ or cuprous acetylides.²¹ In the metallation stage the fluoroalkylcopper compound would be formed as a solvated complex which may be associated with cuprous iodide remaining in solution. In the second stage, coordination of aromatic halide²¹ is followed by an exchange of ligands at copper:

$$R_F I \xrightarrow{Cu} R_F CuL_3 + ICuL_3$$

$$R_FCuL_3 \xrightarrow{Arl} Ar$$
 $CuL_2 \rightarrow ArR_F + ICuL_3$
 R_F

A coordinating solvent must be present for the overall fluoroalkylation process to succeed, although a very small amount is effective: dilute solutions of either DMSO or pyridine in an inert diluent (e.g. hexafluorobenzene) promoted reactions in very high yield. These reactions were successful even when the molar ratio of coordinating solvent to iodofluoroalkane was less than one, although reaction times were a factor of 10 or more greater than usual. The metallation stage requires a solvent which is a reasonably good ligand for copper in order to stabilise the fluoroalkylcopper compound and to assist reaction by dissolving cuprous halides, thus keeping the copper clean. The second stage should have similar solvent requirements to reactions involving cuprous salts, ²⁰ and similar changes of reaction rate on changing from one solvent to another might be expected to occur, reactions being slower in solvents which are better ligands for copper. However, even at the lower temperatures of 70–100° fluoroalkylations were not noticeably slower in pyridine, which is a better

ligand for copper than the other solvents studied. To some extent the two stages of reaction have conflicting solvent requirements, and with some solvents the metallation stage could be the rate-controlling step in the overall process. The solvent requirements of the whole fluoroalkylation reaction appear to be best met by DMSO.

The mechanism is well supported by the observed order of ease of displacement of aromatic halogen, I > Br ≥ Cl. It would also be expected from observations on the reactions of cuprous salts²⁰ that this reaction would be uniquely effected by copper, that is by the fluoroalkylcoppers. This is supported by our finding that many other metals were ineffective under the same conditions, including some which are known to form stable fluoroalkylorganometallic compounds, for example, zinc and mercury.

The fluoroalkylcopper compounds represent a very useful addition to the range of copper derivatives available for this general class of aromatic substitution reactions; their interaction with halogenoethylenes has also been described.²² Their lack of reactivity towards water and other protic reagents allows the fluoroalkylation in good yield of aromatic halides bearing free carboxyl, amino or hydroxyl groups. This is in direct contrast to the Ullmann biaryl synthesis which is strongly inhibited 23,24 by the presence of such groups. The stability of the fluoroalkylcopper compounds in solution indicates that they are not ionically dissociated, and even on thermal decomposition, products resulting from radicals rather than from free carbanions are formed. Nor are ionic decomposition products formed during reaction with the halogenoaromatics, indicating that free carbanions are not involved in the fluoroalkylation.

In comparison with other methods, 2-6 this route to (fluoroalkyl)aromatic compounds offers certain advantages: fluoroalkyl groups can be introduced at predetermined positions on the aromatic nucleus; the products are isomerically pure; both the iodoaromatic and iodofluoroalkane may bear a variety of substituents; and a very convenient method is provided for the direct introduction of certain fluoroalkylene groups into aromatic structures.

EXPERIMENTAL

Starting materials. Monoidofluoroalkanes were used as purchased (CF₃I, C₃F₇I, and C₇F₁₅I), prepared by telomerization of C₂F₄ with C₃F₇I, or prepared from fluoroalkanoyl chlorides.⁹ Di-iodoperfluoroalkanes were prepared from perfluoroalkanedioyl dichlorides.9 The halogenoaromatic compounds were used as purchased, or prepared from the corresponding amines. Polar aprotic solvents were dried by standard procedures: distillation at reduced pressure from P2O3 for DMF, DMAC and HMPA; distillation from KOH for pyridine and 2,6-lutidine; distillation at reduced pressure from CaH₂ for DMSO; distillation at reduced pressure for sulpholane. Copper bronze was activated by treatment with iodine and then washed with HCl in acetone, followed by acetone alone.

Gas-liquid chromatography. The progress of all the fluoroalkylation reactions was followed by GLC where possible, using a low loading of silicone elastomer gum on a diatomite support (e.g. column 0.25 in dia x 5 ft, 3 to 5% E301 on AW DMCS Chromosorb G, 60-70 mesh). Many products were purified by by preparative-scale GLC (column 0.375 in dia × 20 ft, 30% SE30 on Chromosorb W, 45-60 mesh; or column 0.5 in dia × 10 ft, 20% SE52 on AW DMCS Chromosorb W, 60-80 mesh).

Preparation of fluoroalkyl-substituted aromatic compounds

Five experimental procedures (A-E) were employed, which had many features in common. All preparations were done either in vacuo, or under an inert atmosphere of nitrogen or argon. Where possible, the internal temperature of the reaction mixture and the external temp of the heating bath were continuously monitored, enabling the course of the exothermic reaction to be observed and good temp control to be maintained. The results of some preparations are summarized in Tables 1, 2, and 3, and the physical properties of the various products in Table 4. Mass spectroscopy was used extensively to identify the products, and some of these results have been reported.²⁵

Method A by preforming the fluoroalkylcopper. The iodofluoroalkane was heated with a stirred suspension of copper bronze in the selected solvent to a temp at which reaction occurred (usually indicated by an exotherm) until reaction was adjudged to be complete, the temp and time being indicated at (i) in Tables 1 and 2. The rate at which the iodofluoroalkane was consumed could often be followed by GLC. The resulting soln was filtered in an inert atmopshere if an excess of Cu bronze was present before treatment with the halogenaromatic compound; the temp and time required to complete the reaction is indicated at (ii) in Tables 1 and 2. The products were isolated by treating the mixture with water and either Et₂O or CH₂Cl₂, filtering to remove cuprous salts, washing the organic phase with water until free from the reaction solvent, and finally distilling the organic phase.

Method B by having all the reactants together initially—open flask. The iodofluoroalkane, halogenoaromatic compound, Cu bronze, and solvent were stirred and heated at the required temp for the time indicated in Tables 1 and 2. In the initial stages, careful temp control of the mixture was required to prevent over-heating caused by the exothermic reaction. The products were isolated as in A.

Method C by having all the reactants together initially—sealed tube. The reactants were sealed in a boro-silicate glass tube in vacuo and heated in a Carius furnace at the temp and for the time indicated in Table 1. It was possible to judge whether reaction had occurred by the state of the Cu bronze, and in this way the temp could be increased until reaction took place. The products were isolated as in A.

Method D by addition of the iodofluoroalkane at the reaction temperature. The halogenoaromatic compound, Cu bronze, and solvent were stirred together, generally at about 120°, while the iodofluoroalkane, alone or in soln, was added (with materials b.p. < 100°, the addition was made below the surface of the hot soln). The time and temp for the addition is shown at (i) in Tables 1, 2 and 3; the reaction mixture was stirred and heated for the further time shown at (ii). The products were isolated as in A.

Method E by addition of the copper at the reaction temperature. The iodofluoroalkane, halogenoaromatic compound, and DMSO were stirred together at the the reaction temp. Cu was added in several portions at the rate at which it was consumed in the exothermic reaction. The temp and time for the addition appear at (i) in Table 2, and the further period at (ii). The products were isolated as in A.

Perfluoroheptylcopper

1-Iodoperfluoroheptane (10 g, 0·020 mole), Cu bronze (3·0 g, 0·048 g atom) and DMSO (20 ml) were stirred and heated in an argon atm at 106° (bath) for 45 min. On standing and cooling, the excess of Cu and a ppt settled, leaving a clear green-amber soln. In an argon atm (glove box), the clear soln was decanted into deoxygenated water (50 ml); cuprous iodide and a pale blue oil were precipitated. The oil was taken into ether (30 ml), the ether soln was washed with water (5 × 30 ml), dried (MgSO₄) and filtered to give a clear, pale amber soln (26 ml). 1-Iodoperfluoroheptane was shown to be absent from this soln by GLC and the soln was also free from cuprous iodide and DMSO (Na fusion).

Portions of the ether soln were evaporated (at $20^{\circ}/0.05$ mmHg) for 90 min to give a clear green-amber syrup which was essentially perfluoroheptylcopper (Found: Cu, 12·3, 13·3. $C_7F_{15}Cu$ requires: Cu, 14·6. $C_7F_{15}Cu \cdot C_4H_{10}O$ requires: Cu, 12·6%). The compound solidified on standing at room temp, but decomposition also occurred with separation of free Cu.

Perfluoroheptylcopper (0.72 g, 0.0017 mole), obtained similarly from the ether soln (4 ml), was dissolved in DMSO (3 ml) and the soln heated with iodobenzene (0.70 g, 0.0034 mole) in an argon atm at 120° (bath) for 15 min. The usual isolation procedure gave (perfluoroheptyl)benzene (0.47 g, 65%), identified by GLC and its IR spectrum.

The ether soln rapidly discoloured in air, finally becoming green, and a green solid was obtained on evaporation. Treatment of this with dil H_2SO_4 aq gave perfluoroheptanoic acid, identified by its IR spectrum and converted into its S-benzylisothiouronium salt, m.p. 180–182° (Found: C, 34-5; H, 2-0; F, 47-8. Calc. for $C_{15}H_{11}O_2F_{13}N_2S$: C, 34-9; H, 2-2; F, 47-9%).

Preparation and decomposition of 3-phenylhexafluoropropylcopper

1-Iodo-3-phenylhexafluoropropane (7·1 g, 0·020 mole), Cu bronze (2·5 g, 0·040 g atom) and dry DMSO (30 ml) were stirred and heated in an argon atm at 120° (bath) until all the Cu had been consumed (25 min). On allowing the mixture to cool to 20°, the ppt settled to leave a clear soln. GLC analysis showed that all the iodo compound had been consumed.

An aliquot of the soln (5 ml) gave, on reaction with iodobenzene at 120° for 10 min, 1,3-diphenylhexafluoropropane in 60% yield (Table 1).

Dry air was bubbled through another aliquot (4 ml) at 20° for 100 min. A deep, clear, blue-green colour developed which became very dark and then faded to pale green. GLC analysis indicated the presence of 1-iodo-3-phenylhexafluoropropane. Water was added, the mixture extracted with CH₂Cl₂, and the dried soln distilled to give a residue of 1-iodo-3-phenylhexafluoropropane (0-6 g. 64%), identified by its IR spectrum.

The remaining soln (21 ml) was heated in an argon atm at 150-155° (bath) for 5 hr. A sample (1 ml) of the heated soln was removed and treated with iodobenzene (0-07 g) at 120°. GLC analysis showed that no 1,3-diphenylhexafluoropropane was formed. The remaining mixture was treated with CH₂Cl₂ (100 ml), filtered, washed thoroughly 4 times with water, dried, and the CH₂Cl₂ removed to give a brown oil (2:35 g). GLC analysis indicated the presence of 3 components. A portion of the oil was separated by preparativescale GLC to give (i) a mixture of 1-phenyl-3H-hexassuoropropane (yield, by GLC and MS, 35%) and 1,1,2,2,3,3-hexafluoroindane (yield, by GLC and MS, 25%) identified by MS, molecular ions at 228 (C₆H₆F₆) and 226 (C₆H₄F₆) and a consistent fragmentation pattern; (ii) 4-phenyl-2.2.3.3.4.4-hexafluorobutyl methyl sulphide (yield, by GLC, 4%) identified by MS, molecular ion at 288 (C₁₁H₁₀F₆S) and a consistent fragmentation pattern; and (iii) 1,6-diphenyldodecafluorohexatie (yield, by GLC, 13%) identified by MS, molecular ion at 454 (C₁₈H₁₀F₁₂) and a consistent fragmentation pattern.

NMR spectroscopy. Fluorine- and proton-magnetic resonance spectra were recorded* for the compounds: 1-phenyl-3H-hexafluoropropane; 2-phenylheptafluoropropane; 1-(m-acetoxyphenyl)-3H-hexafluoropropane; 1-(m-acetoxyphenyl)heptafluoropropane; 1-phenylpentadecafluoroheptane; 1,3-diphenylhexafluoropropane; and 1.3-di(m-tolyl)hexafluoropropane. The spectrum in each case confirmed the structure given.

Acknowledgements—The authors thank Miss P. A. Grattan, M. A. H. Hewins, J. S. Pippett, and Mrs. M. A. White for their experimental assistance, Dr. J. L. Cotter for the mass spectral identification of many of the compounds prepared, and their colleagues in Materials Department, RAE, Farnborough for much useful discussion and advice.

REFERENCES

This work was reported at an earlier stage in Royal Aircraft Establishment Technical Report No. 66341, October 1966, presented in part at the Fourth International Fluorine Symposium, Estes Park, Colorado, July 1967, and is covered by British Patent 1,156,912 and U.S. Patent 3,408,411.

- ² G. V. D. Tiers, J. Am. Chem. Soc. 82, 5513 (1960).
- ³ I. L. Knunyants, V. V. Shokina, M. P. Krasuskaya and S. P. Khulakyan, Izvest. Akad, Nauk S.S.S.R., Otdel. khim. Nauk 1520 (1967).
- ⁴ N. O. Brace, U.S. Pat. 3, 271, 441 (1966); Chem. Abstr. 66, 2388 (1967).
- ⁵ J. J. Drysdale and D. D. Coffmann, J. Am. Chem. Soc. 82, 5111 (1960).
- ⁶ W. R. Hasek, W. C. Smith and V. A. Engelhardt, *Ibid.* 82, 543 (1960).
- ⁷ M. Prober, *Ibid.* 75, 968 (1953).
- ⁸ I. J. Lawrenson, unpublished results.
- 9 V. C. R. McLoughlin, Tetrahedron Letters No. 46, 4761 (1968).
- ¹⁰ J. P. Critchley, private communication.
- ¹¹ H. Gilman and L. A. Woods, J. Am. Chem. Soc. 65, 435 (1943).
- ¹² H. Gilman and J. M. Straley, Rec. Trav. Chim. 55, 821 (1936).
- ¹³ A. Cairncross and W. A. Sheppard, J. Am. Chem. Soc. 90, 2186 (1968).
- ¹⁴ R. N. Haszeldine and E. G. Walaschewski, J. Chem. Soc. 3607 (1953).
- ¹⁵ W. C. Francis and R. N. Haszeldine, *Ibid.* 2151 (1955).
- ¹⁶ G. M. Whitesides and C. P. Casey, J. Am. Chem. Soc. 88, 4541 (1966).
- ¹⁷ G. M. Whitesides, C. P. Casey, J. SanFilippo, Jr. and E. J. Panek, Trans. N.Y. Acad. Sci. 29, 572 (1967).
- 18 H. O. House, W. L. Respess and G. M. Whitesides, J. Org. Chem. 31, 3128 (1966).
- 19 F. G. A. Stone and P. M. Treichel, Adv. Organometallic Chem. 1, 143 (1964).
- ²⁰ R. G. R. Bacon and H. A. O. Hill, Quart. Rev. 19, 95 (1965).
- ²¹ R. D. Stephens and C. E. Castro, J. Org. Chem. 28, 3313 (1963).
- ²² J. Burdon, P. L. Coe, C. R. Marsh and J. C. Tatlow, Chem. Comm. 1259 (1967).
- ²³ P. E. Fanta, Chem. Rev. 64, 613 (1964).

- ²⁴ J. Forrest, J. Chem. Soc. 581 (1960).
- ²⁵ J. L. Cotter, *Ibid.* 1162 (1967).
- ²⁶ A. G. Galushko, V. V. Shokina, L. M. Yagupol'skii and I. L. Knunyants, Zh. obshchei Khim. 37, 2006 (1967).

 27 E. T. McBee and O. R. Pierce, *Ind. Eng. Chem.* 39, 399 (1947).
- ²⁸ E. T. McBee, C. W. Roberts and A. F. Meiners, J. Am. Chem. Soc. 79, 335 (1957).